W B+ tree wszystkie rekordy (albo wskaźniki do rekordów) są w liściach, a węzły wewnętrzne trzymają tylko klucze do nawigacji. Liście są zwykle połączone, więc skany zakresowe są bardzo szybkie. To pasuje do dysku: duża liczba dzieci daje płytkie drzewo, a połączone liście ułatwiają szybkie odczyty po kolei.
Odpowiedź zaawansowana
Głębiej
Rozwinięcie krótkiej odpowiedzi — co zwykle ma znaczenie w praktyce:
Złożoność: porównaj typowe operacje (średnio vs najgorzej).
Inwarianty: co musi być zawsze prawdą, żeby struktura/algorytm działał poprawnie.
Kiedy wybór jest zły: objawy w produkcji (latencja, GC, cache misses).
Wytłumacz "dlaczego", nie tylko "co" (intuicja + konsekwencje).
Trade-offy: co zyskujesz i co tracisz (czas, pamięć, złożoność, ryzyko).
Edge-case’y: puste dane, duże dane, błędne dane, współbieżność.
Przykłady
Krótki przykład (szablon do wyjaśniania):
// Example: discuss trade-offs for "b-tree-vs-b+-tree:-jaka-jest-praktyczna-różnica-"
function explain() {
// Start from the core idea:
// W B+ tree wszystkie rekordy (albo wskaźniki do rekordów) są w liściach, a węzły wewnętrzne
}
Typowe pułapki
Zbyt ogólna odpowiedź (brak konkretów, brak przykładów).
Brak rozróżnienia między "średnio" a "najgorzej" (np. złożoność).