Resize często oznacza alokację większej tablicy i przeliczenie (rehash) oraz przeniesienie wszystkich wpisów, czyli O(n) pracy naraz. To może zrobić pauzę i skok latencji. Jak temu zapobiegać: rozsądny load factor, pre-size gdy znasz rozmiar, inkrementalny rehash (przenoszenie stopniowo) albo użycie implementacji współbieżnej, która rozkłada pracę w czasie.
Odpowiedź zaawansowana
Głębiej
Rozwinięcie krótkiej odpowiedzi — co zwykle ma znaczenie w praktyce:
Złożoność: porównaj typowe operacje (średnio vs najgorzej).
Inwarianty: co musi być zawsze prawdą, żeby struktura/algorytm działał poprawnie.
Kiedy wybór jest zły: objawy w produkcji (latencja, GC, cache misses).
Wytłumacz "dlaczego", nie tylko "co" (intuicja + konsekwencje).
Trade-offy: co zyskujesz i co tracisz (czas, pamięć, złożoność, ryzyko).
Edge-case’y: puste dane, duże dane, błędne dane, współbieżność.
Przykłady
Krótki przykład (szablon do wyjaśniania):
// Example: discuss trade-offs for "dlaczego-resize-tablicy-haszującej-może-powodowa"
function explain() {
// Start from the core idea:
// Resize często oznacza alokację większej tablicy i przeliczenie (rehash) oraz przeniesienie
}
Typowe pułapki
Zbyt ogólna odpowiedź (brak konkretów, brak przykładów).
Brak rozróżnienia między "średnio" a "najgorzej" (np. złożoność).