Deep dive
Expanding on the short answer — what usually matters in practice:
- Context (tags): dijkstra, bellman-ford, negative-weights, graphs
- Complexity: compare typical operations (average vs worst-case).
- Invariants: what must always hold for correctness.
- When the choice is wrong: production symptoms (latency, GC, cache misses).
- Explain the "why", not just the "what" (intuition + consequences).
- Trade-offs: what you gain/lose (time, memory, complexity, risk).
- Edge cases: empty inputs, large inputs, invalid inputs, concurrency.
Examples
A tiny example (an explanation template):
// Example: discuss trade-offs for "why-doesn’t-dijkstra-work-with-negative-edge-wei"
function explain() {
// Start from the core idea:
// Dijkstra assumes that once a node has the smallest known distance, it will never improve l
}
Common pitfalls
- Too generic: no concrete trade-offs or examples.
- Mixing average-case and worst-case (e.g., complexity).
- Ignoring constraints: memory, concurrency, network/disk costs.
Interview follow-ups
- When would you choose an alternative and why?
- What production issues show up and how do you diagnose them?
- How would you test edge cases?